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LETTER TO THE EDITOR 

Scaling laws for the internal energy and the heat of dilution of a 
polymer solution 
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Institut fur Theoretische Physik der Universitat Heidelberg, 69 Heidelberg, Germany 

Received 15 April 1976 

Abstract, We relate the internal energy of a polymer solution to a field-theoretic vertex 
function, differentiated with respect to the coupling constant. Renormalization group 
arguments yield the scaling law which has a simple physical interpretation. Application of 
our result to an evaluation of the heat of dilution shows a close relation between this 
quantity and the osmotic pressure. 

Recently it has been shown (de Gennes 1972, des Cloizeaux 1975) that a dilute solution 
of long chain molecules can be described within the framework of renormalized field 
theory. The problem has been reduced to the treatment of a classical field with local 
four-point coupling. One important result of that approach is a scaling law for the 
osmotic pressure P,: 

P,/kBT= C p ( l  +P(NwdcpS)) .  (1) 

Here cp and N denote the number density of the polymer chains and the number of links 
per chain, respectively. d = 3 is the dimensionality of the system and v -0.6 is a 
universal exponent. The scale factor S depends on the special features (density p, 
temperature T, etc) of the system considered. The function P ( x )  is universal, and can be 
calculated from a renormalized field theory. For small arguments, one obtains P ( x )  - x  
and this yields a simple power law for the N dependence of the second virial coefficient 
P2(N)  defined by 

P, = kBTC, +P*(N)C; + O(C2) (2) 

c ,  = Nc,. (3) 
For large values of NWdcp, one obtains the asymptotic form 

wd/(wd -1) P, = PmC, (4) 
To derive these results, des Cloizeaux (1975) started from the ratio Z of the grand 
canonical partition function of the solution to that of the pure solvent. He showed that 
3 is given by a field-theoretic vertex function. It is obvious that from this starting point 
we can calculate other thermodynamic quantities like the entropy of mixing, the 
chemical potential of the solvent, or the excess of the internal energy due to the 
presence of polymer molecules. We here present the results for the excess energy 

( 5 )  
2 a  Au = -kBT -In Z. 
aT 
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In equation (5) the partial derivative with respect to the temperature T has to be taken 
with fixed activities for both the solvent and the polymer. As a consequence, in the 
field-theoretic model only the bare coupling constant go (and an additive contribution 
to the ba1.e mass) are varied, and thus the problem of calculating Au is essentially 
reduced to that of calculating the derivative of a vertex function with respect to go. It is 
well known (BrCzin et a1 1974) that this yields a linear combination of several 
renormalized vertex functions, the different terms having an appealing interpretation in 
our problem. We find 

Here w -0.75 is another universal exponent. The coefficients al  to a4 are independent 
of N and cp. For later use we note the expression for a3:  

(8) 

The derivation of equations (6) to (8) will be given elsewhere. Here we want to discuss 
some implications and point out the relevance for the interpretation of some experi- 
ments. 

Equation (6) splits nicely into a sum of different contributions, which can be 
interpreted in physical terms. In the isolated chain limit we find 

2 8  
a3 = kBT -In s. 

aT 

c,+o lim Au/cp= alN+a2+aJV”Uc(0).  (9) 

Obviously a 1  is the average energy of solvation of one link and a2 represents an 
additional contribution from the ends of the chain. Close contacts of different parts of 
the chain give rise to the a4 term. The decrease with N of this contribution is noticeable. 
A naive estimate yields an increasing result: neglecting correlations we find for the 
number n of close pairs n - N2R-3,  where the radius R of the chain increases like N” 
(de Gennes 1972). Consequently we estimate n -No.’. The difference compared to 
the correct result n - stresses the strong effective repulsion among different parts 
of the same chain, which is due to the ‘self-avoiding’ aspects of the problem. 

The a3 term vanishes in the isolated-chain limit, but it dominates the a4 term in the 
limit of large overlap among chains (i.e. N +. CO, c, fixed, small): 

In deriving this equation we assume that the limit N +  CO, c, fixed, exists (des Cloizeaux 
1975, D VI). It is suggestive that the a3 term represents the energy of interaction among 
different chains. Its close relation to the osmotic pressure is quite understandable since 
it is the interaction among different chains which gives rise to P,- kBTcp # 0. 

From these equations we can derive scaling expressions for various thermodynamic 
quantities. We here concentrate on the heat of dilution which has been of some interest 
experimentally (Flory 1970, Lichtenthaler and Heintz 1976, private communication). 
We start with a volume Vcontaining solvent of densityp and polymer of density cp. We 
add a volume AV of solvent of density po. As a result we find a change in volume, 
accompanied by the production of an amount AQ of heat. During this process the 
pressure (and the temperature) are held fixed, and this yields an equation for 
p =p(T,  P; cp) which can be evaluated for small p -pot  po = p(T, P, 0). Using this result 
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together with equations (1) and (6) we can calculate AQ/A V. We here give the results 
for the two limiting cases discussed throughout this letter. 

(i) Nfixed, cp + 0 

(ii) c, # 0 fixed, N + cc 

Note that in both limits the leading contribution is determined completely by the 
osmotic pressure and by xl. From its definition (8) a3 can be fixed by a measurement of 
the osmotic pressure as a function of T. So the leading terms in equations (1 1) and (12) 
can in principle be fixed by an independent measurement, and results for the heat of 
dilution can be analysed to yield the first correction, and thus the exponent w .  

A quantitative test of equation (1 1) may be difficult, since it involves an extrapola- 
tion to cp = 0 of heat-of-dilution data, which are taken at sizable values of cp. From its 
derivation, equation (12) is restricted to small concentrations, too. The actual range of 
applicability of this approach, however, depends on the system and can be very large 
(c ,p- '  -0.5), as has been found in scattering experiments (Daoud et a1 1975, Schafer 
and Witten 1976). Thus an experimental test is not inconceivable. A comparison with 
existing data (Flory 1970, Lichtenthaler and Heintz 1976, private communication) 
shows satisfactory qualitative agreement. 

Finally we want to note that the scaling laws for other quantities like entropy of 
mixing etc take the structure of equation (6), but with different constants a1  to a4. 
Experimental information on these quantities therefore could also be included into a 
test of the theory. 
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